
Outfitting the Compleat Astronomer!

Everything You Need to Observe in Style and Comfort!

Michael W. Masters

Isaac Walton, 1653

The Compleat Astronomer

Setting Expectations

- The talk deals strictly with accessories
 - Hopefully you already have a scope and mount!
 - Astrophotography is not covered
- The products discussed herein are items that I own or have owned or are similar to products that I own
 - Other related products would work just as well
- I don't own shares in or have a relationship with any company that makes or sells astronomy gear
 - I do, however, sometimes tell people what I
 think about their stuff and occasionally the result shows up in a later release of the product!
- Accessories aren't a substitute for a good scope and mount, but they can enhance the observing experience

Gear Choices for Amateur Astronomers

- Setting up the scope, aligning & calibrating the mount, etc.
- How does one get power to the mount and accessories?
- What does one look for? (star charts, observer guides)
- Finding objects (finder scopes and unit power finders)
 - Getting a good view of objects in the sky (eyepieces, filters)
- What do you do if you wear glasses?
- Having the right accessories (e.g. red flashlight)
- Remembering to pack accessories you don't think of until it's too late (batteries, fuses, tools, spare parts, etc.)
- Keeping the scope dry on humid nights
- Staying warm (or bug free, etc.)
- How do you keep the optics clean?
- What can you do with a computer?
- Where *DO* you put all that stuff!!?

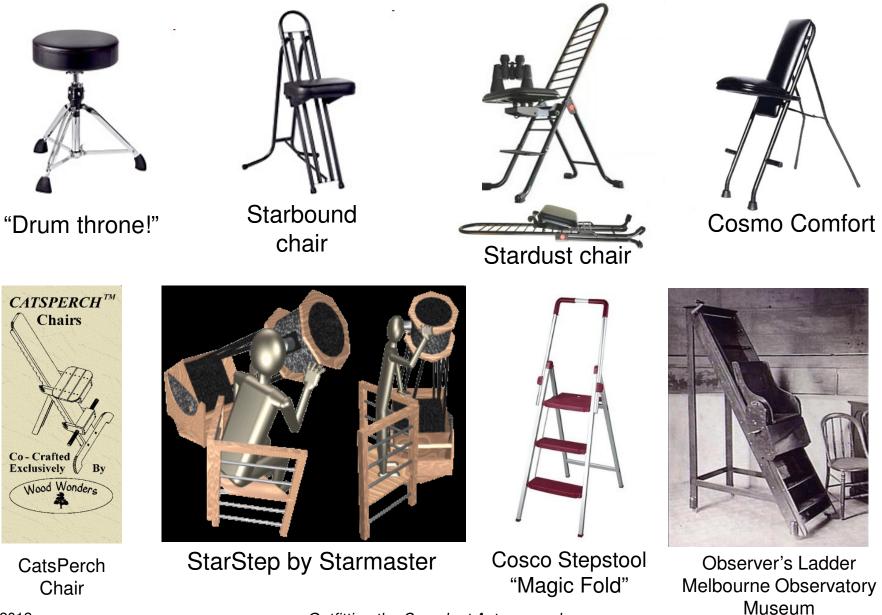
Especially difficult for beginners June 2012

Outfitting the Compleat Astronomer!

Outfitting the Compleat Astronomer!

Shake Enders

Carpenter's pitch level



tack box

June 2012 & transport handles

Observing Chairs and Stepstools

Outfitting the Compleat Astronomer!

Finder are Essential – Which is Easier to Use?

Hint: Can you contort your neck like a great blue heron?

Finder are Essential – Which is Easier to Use?

Finding objects in the sky is one of the most difficult tasks for beginners . . . and right angle finders are *MUCH* easier to use!!

Just Say 'No" to Wimpy Finders!

EDITOR / PUBLISHER	Leif J. Robinson
SENIOR EDITOR	J. Kelly Beatty
MANAGING EDITOR	Timothy Lyster
TECHNICAL EDITOR Richa	rd T. Fienberg, Ph.D.
ASSOCIATE EDITORS	Dennis di Cicco
	Stuart J. Goldman
	Alan M. MacRobert
Ster	ohen James O'Meara
	Roger W. Sinnott
ASSISTANT EDITORS	Kari Nyren
	Samantha Parker
	Alisa Wolf
ART DIRECTOR	Steven Simpson
DESIGN DIRECTOR	Kevin Sartoris
PRODUCTION MANAGER	William H. Bonney
ADVERTISING DESIGNER	Mary Santa Maria
TECHNICAL ILLUSTRATOR	José R. Díaz
GRAPHIC ARTIST	Charles T. Baker
Indornendend Initia	R. Barron-Pesetsky Susan B. Bryant
	Susan D. Bryant
ADVERTISING DIRECTOR	Lester J. Stockman
ASSISTANT	Celia M. Cornish
MARKETING DIRECTOR	ouglas T. Dinsmoor
SUBSCRIPTION MANAGER	Sarah E. Bulger
ASSISTANTS	Theresa Downing
	Anna Tanner
Founded in	1041
Tounaea m	1.774

by Charles A. Federer, Jr. and Helen Spence Federer

SKY & TELESCOPE (ISSN 0037-6604) is pub lished monthly by Sky Publishing Corporation 49 Bay State Road Cambridge, MA 02138 60 1993 Stare tond cannot de variante en estate Second-class postage paid at Boston, Massachu-setts, and at additional mailing offices. Canadian CET Bas Bluesourg P. #R128921855. Printed in the U.S.A. POSTMASTER: Send address changes to Sky & Telescope, P. O. Box 9111, Belmont, MA 02178-9111,

SUBSCRIPTIONS

U.S. and poss ssions \$27 per year; Ca \$36.38 (including GST); Europe, Africa, and West Asia \$42; elsewhere \$34. To order from the S. and Canada using a credit card call 800-253-0245, Monday-Friday, 9 a.m. - 4:30 p.m Eastern Time, U. S., Canadian, and internationa orders may also be mailed to our Belmont address or faxed to 617-864-6117. Orders must be payable in U. S. funds drawn on a U. S. bank, by tional Money Order, or by MasterCard or VISA.

ADVERTISING For all inquiries, call Lester J. Stockman at 617-864-7360, ext. 135. ADVERTISING SALES REPRESENTATIVE Gregory J. Swan, 414-567-5822

Sky & Telescope November 1993

FOCAL POINT

Ticked Off About Telescopes

able today.

N THE FEBRUARY 1991 issue, also made with these focal ratios? Such page 124, several editors of Sky & telescopes bring out the worst in the L Telescope revealed what irked them Newtonian design. The 6-inch f/8s and most about certain commercial products: 8-inch f/7s, common many years ago, right-angle finders, expensive evepieces, were much better and more versatile reand short-focus apochromats. The following pet peeves are from our readers. Although no one telescope will satisfy evervone's needs, most amateurs will agree that some could stand improvement.

Department-store telescopes. Recently

a novice amateur astronomer excitedly showed me his new telescope - a 2tor. The telescope didn't include a wide-field eyepiece, and the mount was so sloppy that it was nearfinders with ly impossible to bring Saturn into view - even anemic light grasp though the mount came with slow-motion controls.

and puny fields of Although I could resolve view. The standard the rings, the image was 8×50 finders very soft and showed on commercial much spurious color. My friend was im- Schmidt-Cassegrain telescopes. However, I pressed with the image, as telescopes are at most people who see Saturn for the first time are. the bottom of my Only after he tried to cen-

acceptable limit. ter Saturn did he realize that this "quality" telescope had serious shortcomings. I finally acknowledged that no come rather pronounced when the iris is amount of practice on his part would fully open. overcome the telescope's optical and me-

chanical problems A poor-quality 2-inch refractor on a sloppy mount does more to discourage interest in astronomy than perpetually cloudy skies. We need an attractive alternative to the department-store sham scopes. Many people who are ready to move beyond binoculars are often not prepared or able to spend much money on a telescope.

> ANDRE BORMANIS 3167 N. 17th St. Arlington, VA 22201

Large Newtonians. The trend toward larger and larger reflectors is indeed exciting, and I can understand the need to f/5). But why are so many small ones jects across the entire northern and

Unreal eyepieces. Eyepieces match characteristics of telescope objectives inch, "400 ×," department-store refrac- with those of the observer's eye. Yet, until recently, designers attempted to minimize ab-What irks me are errations as if their eyepieces were stand-alone optical systems. At least

flectors than many commercially avail-

ALAN FRENCH

R. D. 4, Box 205A

Scotia, NY 12302

Washout Rd.

some designers have now acknowledged that an objective lies in front of the eyepiece and have made available a few types of eyepieces that are matched to specific would hazard a guess that not one evepiece design in a hundred takes into account the optical system that lies behind it that is, the human eve --whose aberrations be-

> MICHAEL RUDENKO 27 Bedford Ct. Amherst, MA 01002

Tiny screws. Why are finders held in position by three screws with tiny heads. that cannot be adjusted while wearing gloves or mittens? How many observing sessions end before they begin, as the discouraged observer goes indoors with frozen fingers?

> STEVEN MORRIS Los Angeles Harbor College 1111 Figueroa Place Wilmington, CA 90744

Astro Masters. Why do digital guiding keep them short-focus (typically f/4 to systems have databases that include ob-

southern celestial hemispheres? (Not system can only be fully utilized by someone observing near the Equator. All other users living or observing from temperate latitudes can use only a fraction of the data.

There should be three versions of the Astro Masters. Aside from the original, there should be ones specialized for Northern and Southern Hemisphere observers. More objects could then be included that would benefit the user.

When Dennis di Cicco delivered his extensive Advanced Astro Master test report (S&T: May 1990, page 499), he wrote, "The fact that updates are so easily made is comforting to anyone worried that the unit will soon become obsolete." With this statement in mind, it should not be too difficult to create various databases

Computer-controlled telescopes. There seems to be a great need for bolt-on computer control systems, especially for the mass-market Schmidt-Cassegrains. Several manufacturers offer expensive "black boxes" - programmed with their choice of objects - that neither connect to PCs nor slew telescopes automatically.

Many amateurs, I'm sure, would like to everyone can travel.) Logically such a control their telescopes using their own computers. All we really need are a plugin circuit board, shaft encoders, slewing motors, and suitable software. These all appear to be available in subsets but not as an integrated whole.

ANDREW J. ELLIOTT 40 Ryhill Way, Lower Earley Reading RG64AZ United Kingdom

Wimpy finders. What irks me are finders with anemic light grasp and puny fields of view. The standard 8×50 finders on commercial Schmidt-Cassegrain telescopes are at the bottom of my acceptable limit. The ideal finder would be an 80-millimeter f/5 refractor coupled to a 32-mm eyepiece with a 2inch barrel. This finder would yield 121/2× and a 5° field of view - perfect KARL-HERMANN KLEIN for an exit pupil of 6.4 mm. I would top Regengasse 37 it off with a 2-inch Amici diagonal for W-5014 Kerpen correctly oriented images. Regrettably, Germany I have never seen this accessory advertised. Nor have I seen anyone offer a 32-mm illuminated-reticle eyepiece 2 inches in diameter.

> MICHAEL W. MASTERS 1019 Hillcrest Terrace Fredericksburg, VA 22405

Do you have a pet peeve? Send it to Focal Point, Sky & Telescope, P. O. Box 9111, Belmont, MA 02178-9111.

SKY PUBLISHING CORPORATION

PRESIDENT Richard T. Fienberg, Ph.D. John J. Simmons, Jr. **BUSINESS MANAGER** TREASURER Inlins A Visconti **BUSINESS ANALYST** Timothy F. Smith

SKY BOOKS & PRODUCTS DIRECTOR Stephen Peters, Ph.D. Bryan Cholfin ASSISTANT Ellen M. Betz FULFILLMENT Connie A. Markowski Geraldine P. Simmons Chervl Woodward

SHIPPING Lawrence Babin Raymond Marshall George L. Sealey

HOW TO REACH US

Sky Publishing Corp. is located at 49 Bay State Rd., Cambridge, MA 02138, Phone: 617-864-7360. Fax: 617-864-6117, "Skyline" (news): 617-497-4168. For written correspondence please use our mail ing address: P. O. Box 9111, Belmont, MA 02178 9111. Subscription or book and product orders only: call 800-253-0245. Monday - Friday, 9 a.m. - 4:30 p.m. Eastern Time EDITORIAL

Unsolicited manuscripts and photographs are come. Prior to submitting them, please write for midelines The electronic submission of text and cially welcome. Contact SKYTEL@ CFA HARVARD.EDU (Internet) or 70007,2762 CompuServe).

We welcome letters. The editors of Sky & Tele cope are available to answer general inquiries by elephone between 2 and 3 p.m. Eastern Time Media contact: Alan M. MacRobert, 617-864-7360. PHOTOCOPVING

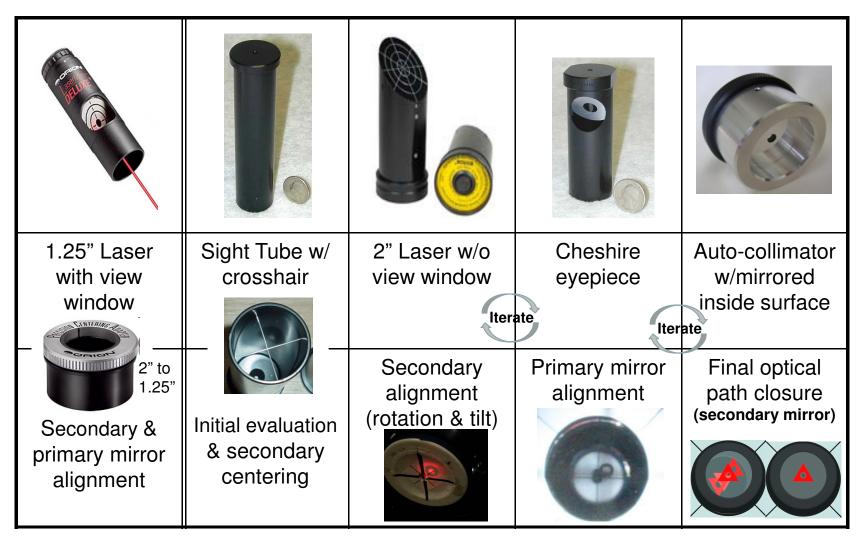
Authorization to photocopy items from Sky & Telescope for personal use, or for the personal use of specific clients, is granted for users registered with he Copyright Clearance Center (CCC) Transaction al Reporting Service, provided that a fee of 25 cents per page per copy is paid to CCC, 27 Congress St. Salem, MA 01970. Specify 0037-5604/93 \$0.00+.25. TRADEMARKS

Sky & Telescope and logo. Sky and Telescope, Sky Publications, Scanning the Skies, Book Faire, Skyline, and ESSCO are registered trademarks of Sky Publishing Corp.

ON THE COVER:

Shortly after the Hubble Space Telescope (HST) was launched in April 1990, horrified ronomers found it to suffer from an opti cal defect known as spherical aberration. In early December NASA hopes to show it still has the "right stuff" by repairing HST in orbit 575 kilometers above Earth. Here artist Scott Kahler depicts the telescope berthed in the Space Shuttle Endeavour's payload bay while two space-walking astronauts install a package of corrective optics called COSTAR. On page 16 technical editor Richard Tresch Fienberg explains the mission's objectives in detail, and on page 24 Endeavour crew member Jeffrey A. Hoffman offers an insider's preview of the daring flight. Artwork courtesy Ball Aerospace and Communications Group.

November 1993 Sky & Telescope 5


Outfitting the Compleat Astronomer!

Finders & Other Accessories

Outfitting the Compleat Astronomer!

Newtonian Collimation Tools

Program presentation "Collimating Newtonian Reflectors: Tools & Methods" is available in PDF format on RaClub.org under Documents > Programs.

Powering Astronomy Gear

BatteriesPlus 35-AH 12 volt SLA AGM Battery

Orion 12-volt 12 AH Power Station

Xantrex DC-to-AC 140W Square Wave Inverter

Samlex DC-to-AC 300W Pure Sine Wave Inverter

June 2012

Outfitting the Compleat Astronomer!

Dew Heaters and Other Stuff

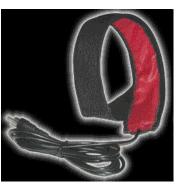
Red Laptop Screen AstroSightSaver.com

USB-to-DB9 Serial Adapter Cable

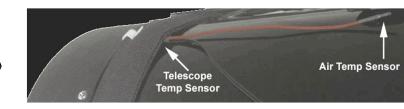
Thousand Oaks Heater Controller

Kendrick Dew Heater

Kendrick Dew Heater Controller


00	DarkAdapted Pro · Screen 1	
Presets: Full	Green	Show Details
	If this display becomes unreadable, press COMMAND + SHIFT + RETURN to restore full brightness	
Gang Sliders	Mai	ntain Relative Value
R 💭		000.0
c		— 100.0
		~
в 🔛		000.0
text text	Text Text	Text Text
DarkAdapted Pro		
©2002-9 Stephen E	Hutson, All Rights Reserved Worldwide	ww.darkadapted.cor

aquiladigital.us/darkadapted/


Kendrick Laptop Heater (good for eyepieces too!)

Dew-Not Dew Heater

DewBuster Controller & Temperature Sensor for Dew Heater Strips

Outfitting the Compleat Astronomer!

Tools You Didn't Know You Needed Until It Was Too Late

Rigel Two-Color Flashlight

Orion Green Laser (Do not point at aircraft!)

Rayovac LED Headlamp Lifetime warranty!

Multi-Tool

Spare Parts

Magnifying Glass

Allen Wrench Set in Metal Case

Susie's Favorites! Outfitting the

Outfitting the Compleat Astronomer!

Tools You Didn't Know You Needed Until It Was Too Late

Rigel Two-Color Flashlight

Orion Green Laser (Do not point at aircraft!)

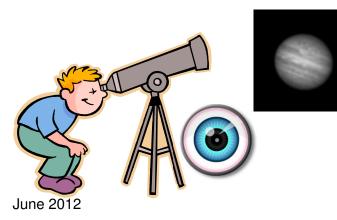
Rayovac LED Headlamp Lifetime warranty!

Multi-Tool

Magnifying Glass

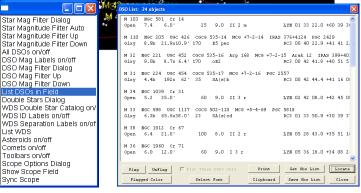
Allen Wrench Set in Metal Case

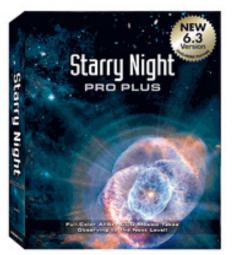
Susie's Favorites!


Outfitting the Compleat Astronomer!

Notes for Glasses Wearers

- Eye relief of ~ 20mm is needed to accommodate glasses
 - Focuser travel will accommodate distance correction provided by glasses
- Image quality of the eye depends on the diameter of the eye pupil
 - Large eyepiece exit pupils reveal eye aberrations such as astigmatism
 - Very small eyepiece exit pupils reveal eye defects such as floaters
- Most observers with astigmatism find they must wear their glasses when viewing at low powers and correspondingly large exit pupils
 - Eye glasses correct for astigmatism but require long eye relief eyepieces
 - Corrective optics may also be used on the eyepiece, e.g. TeleVue Dioptrix
- Higher power eyepieces use a smaller portion of the eye, reducing the effects of astigmatism and eliminating need for glasses
 - If the eyepiece exit beam is small, only that much of the eye is used





Astronomy Software

\$50 - \$250

v • Bella

Cursa.

lead Ne

Hind's Crimson StarZaurak

Beid

Eridanus

Keid

α Merkar

Azha

Kaffaljidhma

Orion

Mintak

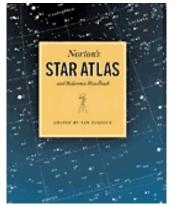
nezium 🦻

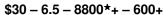
Rigelß

a Arneb

Saip

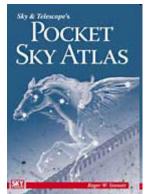
Outfitting the Compleat Astronomer!




http://www.astro-physics.com/tech_support/refractors/care_of_scope_instructions070506.pdf http://www.astro-physics.com/products/accessories/cleaningproducts/optcs-instructions.pdf

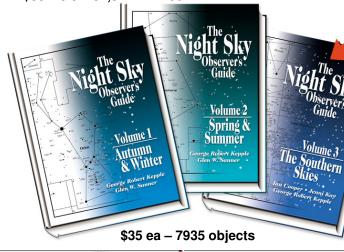
Outfitting the Compleat Astronomer!

* Developed by NASA

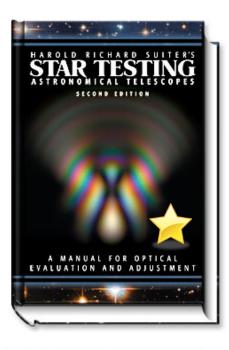

Star Charts and Atlases

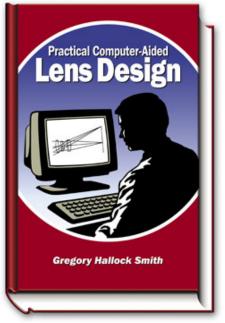
\$10-6.5-8833*-600+

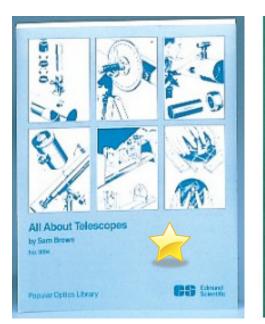
14 - 7.6 - 30,000 - 1500 38 - 8.5 - 81,312 - 2700



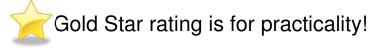
\$20 - 2700 objects

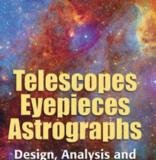

)FFP.SK




\$50 ea - 9.75 - 280,000* - 30,000 June 2012

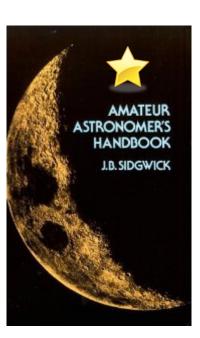
Outfitting the Compleat Astronomer! See SkyMaps.com for more choices 19

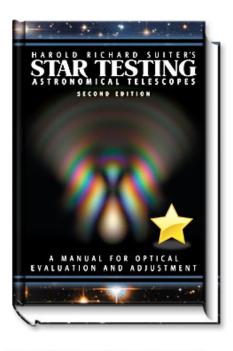


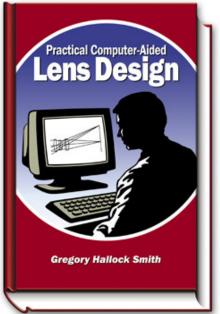


TELESCOPE OPTICS Evaluation and Design by Harrie Rutten and Martin van Venrooil

A Comprehensive Manual for Amateur Astronomers




Gregory Hallock Smith Roger Ceragioli

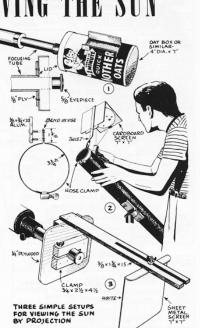

Richard Berry

Design, Analysis and Performance of Modern Astronomical Optics

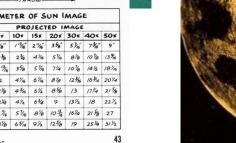
June 2012

Telescope Optics

THE SAFE and sane way to observe the sun is by


The SATE and safe way boost the simple, being merely a cardboard shade slipped over the focusing tube and a piece of white cardboard held behind the eyepiece. Hold the cardboard screen 4 to 6 inches behind the eyepiece and then extend the eyepiece just a little from normal infinity position to focus the sun's image on the screen. Sighting is done by watching the shadow of the telescope tube on the ground or on the sunshade.

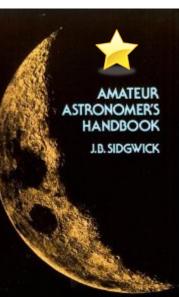
A simple setup is a round cereal box slipped over the focusing tube, Fig. 1. This allows a 3 to 4-in. sun image, which is about normal for a small telescope. Other equipment ideas are shown in Figs. 2 and 3. With any setup using only a simple sunshade, the enlargement should be between 10x and 20x. The situation here is that you are in open daylight, and if you enlarge too much the daylight will wash out the projected image. With a closed box, or inside a darkened room or with a cloth thrown over your head, you can go up to 50x enlargement.


Assume for example 30 in. f.l. objective and desired enlargement of 15x. Table 2 shows the image will be 4-1/16 in, diameter. Then, Table 1 shows the "throw" needed for 15x enlargement using various eyepieces. With 5/8 in. eyepiece, the throw is 9-7/8 inches. This is a bit more than provided by the oat box setup, Fig. 1. However, you can get 10x easily (6-7/8 in, throw), and the

OR	HUYGEN	EYEPIES	CE LENS	WHEN (GE RAMSOL) SUN IS 3"DIAM		2	PRIMA IMAGE (.009 x		
TABLE I	- EYE	PIECE	TO SC	REEN	DISTAN	CE (TI	IROW)	TABL	E 2 - DI	AM
PROJECTION		EYEPI		CAL L	ENGTH				PRIMARY	
MAG.	1/4**	1/2"	5/8"	3/4"	7/8"	۳.	1 1/4"	F.L.	IMAGE	5*
5×	11/2"	3"	31/4	4%"	51/4"	6"	71/2"	20"	./80"	7/8
IOx	2 1/4	51/2	6%	8%	95/8	11	13-1/4	30"	.27/	13
15×	4	8	9%	/2	13%	/6	20	40"	.36/	13
20×	51/4	101/2	/3	15-14	181/4	2/	261/4	45'	.405	2
30*	74	15 1/2	191/4	234	27	3/	38%	48"	.432	2%
40*	10%	20%	25 %	30%	35-4	41	511/4	50"	.451	2%
50×	12 3/4	25%	3/%	38%	4438	51	63 1/4	60"	.54/	2%
	NOT CO	WED CU		1710 01	CIIN			70"	.63/	3%

All about Telescopes, Sam Brown, 1967, Edmund Scientifics

	RY	AME	тни	ROW-	UNI	MAG	IMAG	ECTED
OBJECTIVE	PRIMARY		PRO	JECT	ED I	MAGE		-
F.L.	IMAGE	5+	10*	15×	20×	30×	40×	50×
20"	./80"	7/8"	13/18	2 1/16	3%	5%	73%	9″
20"		1	24	A.4.	c 1/.	0%	1074	128



Telescopes Eyepieces Astrogranhs

Gregory Hallock Smith Roger Ceragioli

Richard Berry

Design, Analysis and Performance of Modern Astronomical Optics

iPhone, iPad App	Personal / Description	Platform	Price
SkySafari+	Star charts, object info & more (gyro) 🔀	iPhone, iPad	\$14.99
Stellarium	Star charts (gyro)	iPhone	Free
Distant Suns	Star charts (pannable)	iPhone	Free/\$9.99
Star Charts	by Wil Tirion (static); 18 charts w/DSOs	iPhone	\$3.99
Star Atlas	Star charts (static); indexed variously	iPhone	Free
Planet Finder	Locate planets (gyro)	iPhone	Free
Planets	Locate planets (gyro, star chart bkgnd) 🧭	iPhone	Free
3D Sun, SOHO, Sun Viewer	NASA Solar Viewers (SOHO 🧭)	iPhone	Free
MoonMapLite	Four quadrant Moon map	iPhone	Free
Mars Globe	Mars terrain & feature map	iPhone	Free
Sunrise & Sunset Lite	Sunrise and Sunset times	iPhone	Free
Moon.	Moon rise, set and phase info	iPhone	Free
APOD	NASA Astronomy Picture of the Day	iPhone	Free
Space Images	NASA/JPL Space Images	iPhone	Free
Go Stargaze	NASA/JPL Night Sky Network	iPhone	Free
iCSC, MyCSC	Clear Sky Clock Outfitting the Compleat Astronomer!	iPhone, iPad	Free

App Survey

Application	Description	Platform	Price
SkySafari+ 2	Star charts, object info & more (gyro)	iPad, Android	\$14.99
Star Walk 1	Star charts, satellites & more (gyro)	iPhone, iPad	\$2.99/\$4.99
MyCSC 1	Clear Sky Clock	iPad	Free
Google SkyMap 3	Star charts (gyro)	Android	Free
SkEYE 1	Planetarium app	Android	Free
Planet's Position 1	Calculates planet positions	Android	Free
GPSEssentials 1	GPS navigation app (mount location)	Android	Free
Sky Week 1	Sky & Telescope app	Android	\$1.99
Lunafaqt 1	Sun and Moon info	Android	Free
Pocket Stars	Basic star atlas	HTC	
PleiadAtlas 1	Pocket star atlas	PalmPilot	
Astronomist 1	Planetarium & eclipse calculator	PalmPilot	
Planetarium 1	No longer supported	PalmPilot	
Orrery 1	No longer supported	PalmPilot	
Messier 1	No longer supported	PalmPilot	
Jovian 1	No longer supported	PalmPilot	
Moon Info 1	No longer supported	PalmPilot	

Checklists for the Forgetful Astronomer!

Astronomy Pack List

Astro-Physics 155 & 130 Refractors

Telescope case Mach 1 or 400GTO mount Hardwood tripod & shake enders Eyepiece and diagonal case Evepiece holder wood tray 155: ZenithStar 66SD case & A-T rings 130: 8x50 finder & rings and/or Starbeam Weights/electronics blue open tray Werker 33 AH batteries (2) Dew & power accessories in red bag Laptop computer & red screen Stardust observing chair Star charts & GOTO instructions Folding table 2.5' x 5' Folding table 2' x 4' Food, drink, clothing, clean glasses

Cold Weather Clothing

ECWCS & Woolpower thermal underwear River Driver shirt & Wooltimate pullover Wool sweater & vest and fleece vest Insulated pants: fleece, windbloc, down Columbia jacket or North Face parka Balaclava, fleece hat, fingerless glove mitts Liner socks: polypro, thermax, SmartWool Wigwam, SmartWool and/or Ragg socks Pipedragons & moon boots or down booties Hand and foot chemical warmers

Overnight at Big Meadows

Air mattress & D-cell batteries Sleeping bag & pillow Folding chair Extra 9v, AA batteries Power inverter Eyepicce dew sheet, cable, controller Werker 33 AH batteries (3) Food cooler & 3 Thermoses + flatware Maps & weather printouts Travel kit w/travel alarm clock Towels

16" Starmaster Truss Dob

Rocker box Mirror box Mirror in box Upper cage Truss carry bag Evepiece case Evepiece holder Collimation tools case Bolts/batteries/telrad carry tray Panasonic batteries (2 to 4) Star charts Starmaster & Sky Commander instructions Evepiece dew sheet, 33 AH, 1000 Oaks Cosco red step stool Folding table 2.5' x 5' Folding table 2' x 4' Folding cloth chair Food, drink, clothing, clean glasses

Star Charts & Accessories

Observing list & info folders Bright Star Atlas 2000.0 Pocket Sky Atlas Sky Atlas 2000.0 Uranometria 2000.0 Samer & Kepple Observer's Guides Weather printout Map printouts Garmin GPSMAP 76CSx

Astro-Physics 105 Traveler

Traveler in carry case Vizen SkyPod mount & tripod 17AH battery & spare AA batteries Eyepiece case (or move eyepieces) Eyepiece holder wood tray Bright Star Atlas, Sky Atlas 2000 Stardust observing chair Folding table 2' x 4' Food, drink, clothing, clean glasses

Revised 1 January 2009

Astronomy Device	Qty	Туре	Brand	Source	Spares Location	Notes
Astro-Physics Keypads (2)	1	CR1632	Renata	Astro-Physics	Becca Room Drawer	Two replacements bought ~Jan 2007
8x50 Finder Illuminated Reticle	2	357 Button	Energizer	Batteries Plus	Eyepiece Case	Blue accessory tray, bought 1 Aug 07
Tele∨ue Starbeam Finder	2	357 Button	Energizer	Batteries Plus	Eyepiece Case	Panasonic LR44, SR44, bought 1 Aug 07
Starmaster Telrad Finder	2	AA	Duracell Ultra	Lowes, etc.	Reflector Tool Case	
Starmaster Sky Commander	1	9 Volt	Duracell	Lowes, etc.	Reflector Tool Case	
Starlight Red/White Flashlight	1	9 Volt	Duracell	Lowes, etc.	Tool Case & Blue Tray	
Laser Collimator	2	AAA	Eveready	Lowes, etc.	Blue Accessory Trays	Both trays
Optronics Headlamp	3	AAA	Eveready	Lowes, etc.	Blue Accessory Trays	Both trays
Green Laser	2	AAA	Eveready	Lowes, etc.	Blue Accessory Trays	Both trays
Photography Device	Qty	Type	Brand	Source	Location	Notes
Canon 550EX Flash	4	AA	Duracell Ultra	Lowes, etc.	Tamrac/Domke Bags	Quantum battery dummy
Canon ST-E2 Flash Wireless	1	2CR5 Lithium	Duracell, etc.	Batteries Plus?	Tamrac nature bag	Old spare in Tamrac nature bag
Can on Wireless LC-4 Tran smitter Can on Wireless LC-4 Receiver	4 4	AA AA	Duracell Ultra Duracell Ultra	Lowes, etc. Lowes, etc.	Tamrac nature bag Tamrac nature bag	Hand remote controller On-camera controller
Canon Remote Timer Release	1	CR2032	Duracell Lithium	Batteries Plus	Tamrac nature bag	Spare bought 31 July 2007
Min olta Flashmeter ∨	1	AA	Duracell Ultra	Lowes, etc.	Tamrac nature bag	2011 use date, installed 7/29/07
Visible Dust Sensor Loupe (3)	2	CR2025	Panasonic	Batteries Plus	Cleaning Supplies	Installed June 2007 , Domke FX-1
Other Devices	Qty	Туре	Brand	Source	Location	Notes
Bushnell Yardage Pro Rangefinder	1	CR2 Lithium	Panasonic, etc.	Batteries Plus	Misc Photo Gear Bag	Spare bought 31 July 2007
Edennen Fandager Forkangennaer						

Astro-Phys	ics 155	D = mm	F = mm	f ratio =	Faintest	Airy disc	Dawes =	Double	OTA	Persona
EDES f7 R					mag =	= arcsec	arcsec	apparent '	weight	eye pupi
LDIOI/IC	enactor	155	1092	7	13	1.8	0.75	4	24 lb	5
Eyepiece	Power	True field	Exit pupil	Effective	Double @	Power	TeleVue	Apparent	Field stop	Eye relie
focal length	Х	deg/min	mm	D	Apparent	X / inch	Туре	field deg	mm	mm
55 mm	20	2.4	7.9	99	12	3	Ploss	50	46	38
31 mm	35	2.2	4.4	155	6.9	6	Nagler 5	82	42	19
22 mm	50	1.6	3.1	155	4.8	8	Nagler 4	82	31.1	19
17 mm	64	1.3	2.4	155	3.8	10	Nagler 4	82	24.3	17
13 mm	84	55 '	1.9	155	2.9	14	Nagler 6	82	17.6	12
9 mm	121	39 '	1.3	155	2	20	Nagler 6	82	12.4	12
7 mm	156	31'	1	155	1.5	26	Nagler 6	82	9.7	12
5 mm	218	22 '	0.7	155	1.1	36	Nagler 6	82	7	12
3.5 mm	312	15 '	0.5	155	0.8	51	Nagler 6	82	4.8	12
2.5 mm	437	11 '	0.4	155	0.5	72	Nagler 6	82	3.4	12
Mallines C	antine .	Denne	F - - - - -	f ratio =	Faintest	Airy disc	Dawes =	Double	OTA	Persona
William C ZenithStar 6		D = mm	F = mm	r ratio =	mag	= arcsec	arcsec	apparent '	weight	eye pupi
ZenithStar 6	6mm SD	66	388	5.88	11.2	4.2	1.8	4	3.5 lb	5
Eyepiece	Power	True field	Exit pupil	Effective	Double @	Power	T	Apparent	Field stop	Eye relie
focal length	Х	deg/min	mm	D	Apparent	X / inch	Туре	field deg	mm	mm
24 mm	16	4	4.1	66	15	6.2	Panoptic	68	27	15

Eyepiece Accessories

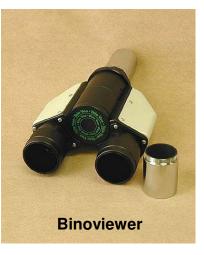
Adapter to use 1.25" Eyepieces in 2" Focuser

Astro-Physics Photo-Visual Telecompressor & Field Flattener

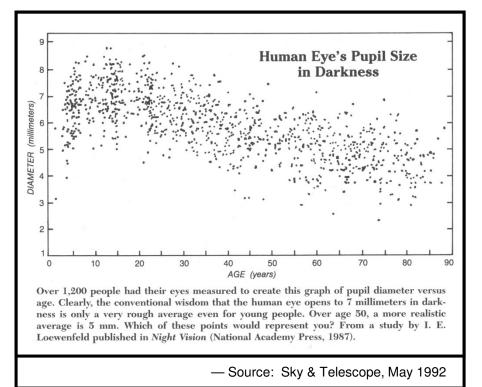
TeleVue Paracorr Coma Corrector (fast Newtonians)

2" Barlow Lens with 1.25" Adapter

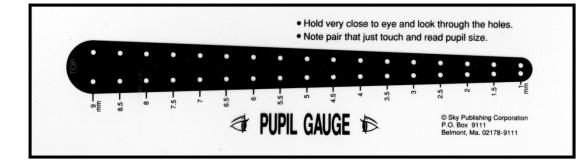
2" Mirror Diagonal with Dielectric Coatings



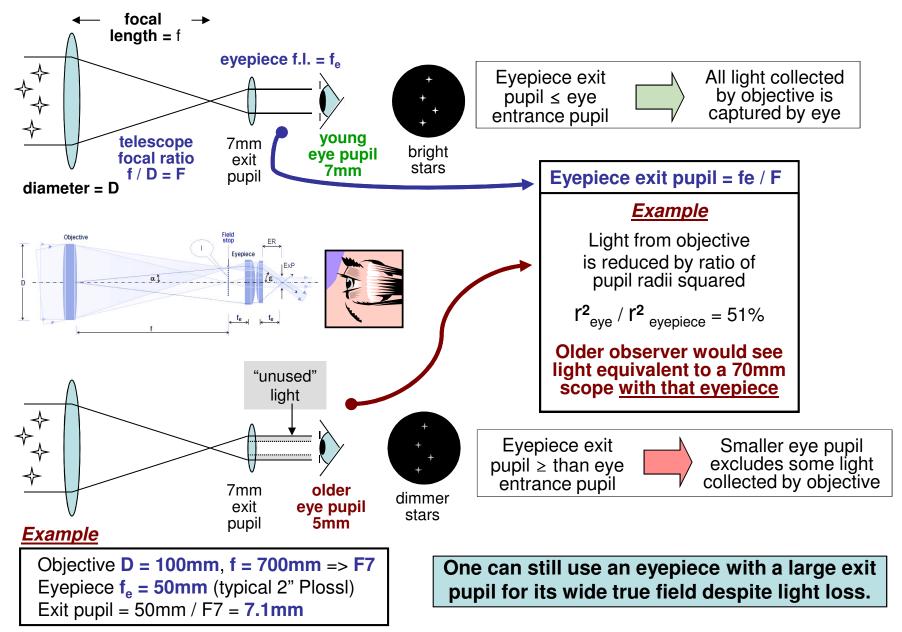
Eyepiece Diopter Corrector for Eye Astigmatism (low power eyepieces)



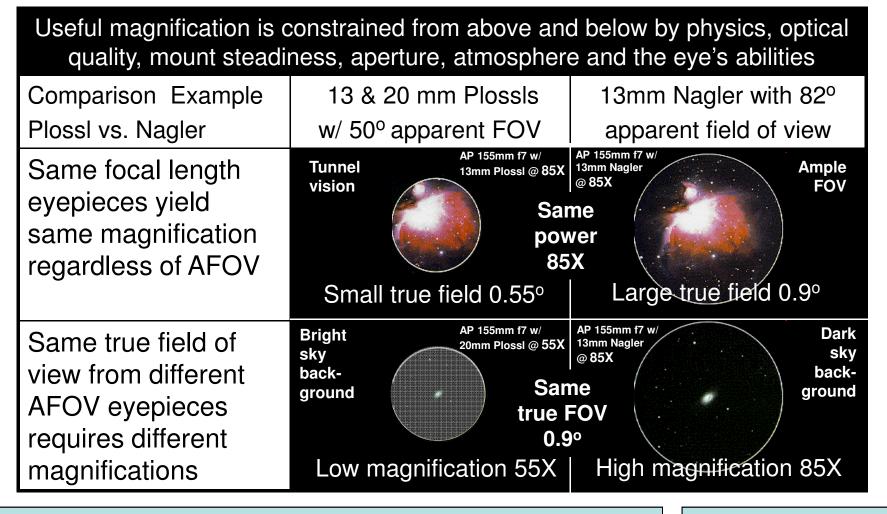
Filters (discussed separately)



Eye Pupil, Age and Magnification



Ŭ	Age vs. Pupil Size and Lowest Magnification (Low power eyepieces have large exit pupils)								
Approx. Age	Avg. Pupil Size	Lowest Effective Magnification per inch of Aperture	Lowest Effective Magnification per cm of Aperture						
< 25	7	3.5	1.4						
30	6.5	3.8	1.5						
35	6	6 4.1 1							
45	5.5	4.5	1.8						
60	5	4.9	2						
80	80 4.5 5.4 2.2								
	— Sour	ce: Event Horizon New Hamilton Am	vsletter, April 1996, ateur Astronomers						


The eye pupil declines with age. Any eyepiece/telescope combo with a larger exit pupil than the eye's entrance pupil excludes some of the objective's light.

Eyepiece Exit Pupil & Eye Entrance Pupil

Magnification and Field of View

Example scope is an Astro-Physics 155mm f7 EDFS

Point sources such as stars remain constant as magnification increases but extended objects grow dimmer; thus the sky dims.

Wide field eyepieces are heavier & costlier

Selected Eyepiece Types

Туре	Inventor	Date	Elements	AFOV °	Notes
Huygens	Huygens	17 th century	2	~25	Poor quality, rarely used
Ramsden	Ramsden	18 th century	2	~35	Poor quality, rarely used
Kellner	Kellner	1850	3	40	Inexpensive, still used
Plossl	Plossl	1860	4	50	Widely used, top quality
Abbe/Ortho	Abbe	1880	4	45	Good planetary/lunar
Monocentric	Stenheil	1880	3	narrow	Good planetary/lunar - TMB
Konig	Konig	1915	3-4	55-70	Very few brands
Erfle	Erfle	< 1921	5-6	60-70	Poor edge performance
Kohler *	Zeiss	1960	11	120 (!)	Military binoculars
Nagler *†	Nagler	1979	6-7	82	Large, heavy, expensive
Panoptic [†]	Nagler	Early 1990s	6	68	Much better than Erfle
Radian *†	Nagler	1999	6-7	60	20mm eye relief for glasses
Ethos *†	Dellechiaie	2007	?	100	Large, heavy, expensive

* Negative (Barlow-like) lens group incorporated in optical path

[†] TeleVue-specific designs.

 Obsolete
 Infrequent
 Inexpensive
 Good quality
 TeleVue

 Sources: Various, including TeleVue, John Savard, <u>http://www.quadibloc.com/science/opt04.htm</u>, and Brayebrook Observatory, Cambridgeshire, UK

Largest True Field and Exit Pupil

Type (TeleVue)	Focal Length fe	Barrel Diameter	AFOV (deg)	Field Stop*			scope F esulting			
	(mm)			(mm)	F10	F8	F7	F6	F5	F4
Plossl	40	1.25"	43	27	4	5	5.7	6.7	8	10
Plossl	32	1.25"	50	27	3.2	4	4.6	5.3	6.4	8
Panoptic	24	1.25"	68	27	2.4	3	3.4	4	4.8	6
Plossl	55	2.00"	50	46	5.5	6.9	7.9	9.2	11	13.8
Panoptic	41	2.00"	68	46	4.1	5.1	5.9	6.8	8.2	10.2
Nagler	31	2.00"	82	42	3.1	3.9	4.2	5.2	6.2	7.8

Exit Pupil (ExP) = fe / F

ExP less than 5mm (age 60)	5X/inch
ExP less than 7mm (age 25)	3.5X/inch
ExP greater than 7mm	<3.5X/inch

* 27mm is largest field stop that fits in a 1.25" barrel (32mm)
 46mm is largest field stop that fits in a 2.00" barrel (51mm)

Maximum True Field Examples (degrees)					
Eyepiece Barrel Diameter	AP 105 Traveler 600mm	AP 155 EDFS 1100mm		Starmaster 16 w/Paracorr 2000mm	Celestron C14 3900mm
1.25"	2.5	1.4		0.8	0.4
2.00"	4.3	2.4		1.3	0.7
North America Nebula 2.0°			Double Cluster 1.0 ^o		Moon 0.5°

Eyepieces yielding exit pupils larger than the eye entrance pupil are still useable but some light from the telescope's objective will be lost

Bandpass and Attenuating Filters

Filters limit admitted light to a selected frequency range. They reduce the amount of transmitted light and thus object brightness. However, they increase object visibility by increasing contrast, e.g. by darkening the sky background more than the objects for which they are designed.

Optimum Exit Pupil for Lumicon Nebula Filters Exit pupil = eyepiece focal length / telescope f ratio				
Filter Type	Deep Sky	UHC	OIII	H-Beta
Bandpass	90nm	22-26nm	10-12nm	8-10nm
Light-polluted sky	0.5-2mm	1-4mm	2-5mm	3-7mm
Dark sky	1-4mm	2-6mm	3-7mm	4-7mm

Color Filters (lunar & planetary)

White Light Solar Filters (Mylar)

Solar H-Alpha Telescopes and Filters

Outfitting the Compleat Astronomer!

David Knisely Lumicon Filter Comparison *

	Filter Performance Scoring		
5	Very Large Improvement over no filter		
4	Large Improvement over no filter		
3	Moderate Improvement over no filter		
2	Slight Improvement over no filter		
1	No improvement or slightly worse than no filter		
0	Much worse than no filter		

Scoring Summary (93 Objects - Sept 2006)			
Filter	Total	Average	
UHC	330	3.55	
OIII	297	3.19	
Deep Sky	205	2.20	
H-Beta	134	1.44	

Ranking Summary					
Filter	Best Filter	2nd Best	Total	Notes	
UHC	41	46	87	Best @ 3.5X to 10X per inch	
OIII	33	23	56	Higher contrast but dimmer vs UHC	
Deep Sky	7	3	10	Designed for light-polluted skies	
H-Beta	14	2	16	Horsehead, California, Cocoon	

* Cloudy Nights: http://www.cloudynights.com/item.php?item_id=1520

Michael's Rules for Astronomy Gear

- Never buy anything larger than you can transport or heavier than you can lift or that you need a mortgage to finance!
 - With telescopes you get what you pay for, so buy the best you can afford but only after enough research to be sure of your choice.
 - If your budget is limited, plan on selling your old gear on Astromart when you upgrade – as you surely will if you stick with the hobby!
- "It is a truth universally acknowledged, that possession of a new telescope must bring rain! [...with apologies to Jane Austen!]
 - A really big Dob should come with an ark! (Or, in winter, a snow plow!)
 - If you really like something, buy a lifetime supply; the maker will probably discontinue it three months before you need another one!

However, if you do, the maker will soon thereafter introduce a new product that obsoletes it – and no one will want your lifetime supply of buggy whips

Pilots use checklists for a reason; so should those of us with porous memories! Otherwise you may run afoul of. . .

- Murphy's Law of Forgotten Gear: Whatever you leave at home will be needed that very night for the first time ever!
- Michael's Corollary: If you forget something, ask me; I probably have a spare in my accessory case! [see Lifetime Supply rule above!]

Forget Rule 1: Aperture wins – Buy an enormous Dob!

Outfitting the Compleat Astronomer!

33

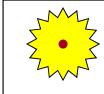
de and Preind

Final Thoughts

Every trip into the field is an opportunity to learn what works and what doesn't. The products described herein have stood the test of time and use for me – but many similar products would serve the same purpose effectively.

Don't economize – accessorize!!

Having "the right stuff" can enhance the viewing experience – and it prevents having an observing session end prematurely because of a mishap such as a blown fuse or dew condensation.


Questions & Answers

Fair Use Notice

In accord with Title 17 U.S.C. Sections 107-118, all copyrighted material herein is reproduced under fair use without profit or payment and is intended solely for the benefit of those receiving the information for non-profit research and educational purposes only. [Reference: http://www.copyright.gov/fls/fl102.html, May 2009]

Never point a telescope at the sun - unless it's a solar telescope, of course!! . . .and don't look into the laser pointer either!!